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Abstract. The short title of the lecture has to be understood as Some geometric prop-
erties of Gaussian random fields. There will be four chapters. First chapter will be dedicated
to general definitions and properties of Gaussian fields indexed by the Euclidean space Rd

(with d ≥ 2). In particular, the crucial role of the covariance function will be emphasized
and the special cases of stationary fields or fields with stationary increments will be men-
tioned. We will also look at stationary Gaussian fields from various points of view : spectral
representation, random wave, synthesis and modelization. Second chapter will deal with a
geometric feature that is really specific to the multivariate context: anisotropy. We will
present various models of Gaussian fields whose distributions all share the property of not
being invariant under rotations. We will try to understand which characteristics of the field
are impacted by the anisotropy property and how they are impacted. In the third chapter, we
will establish Rice formulas. They consist in writing moments of some geometric functionals
as integrals of conditional expectations that can be explicitely expressed through Gaussian
computations. The considered functionals are those who depend on the level sets of the
Gaussian field. These formulas are perfect tools to study both qualitative and quantitative
geometric properties of stationary Gaussian fields. In last chapter, we will visit recent works
on related topics that open new perspectives in link with spatial statistics, number theory,
image analysis or cosmology.

1 Gaussian fields

references for general facts on Gaussian fields [1, 7]
most of the following material can be found in the introductory part of Julie Fournier’s PhD
dissertation [22]

1.1 definitions

covariance function, regression formula

1.2 stationarity

Bochner theorem, spectral measure, stationary increments

1.3 regularity

formulas for the covariance function of derivatives of the field

1.4 random wave model

[20] for the model, inspired by [26, 11, 5, 6], link with (S)PDE [10, 17]
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2 Isotropy/anisotropy

for a survey on anisotropic models [3]

2.1 anisotropic random waves

Berry’s random wave and favorite orientation [20] Prop.3.8, directional statistics [27, 25]

2.2 anisotropic fractional fields

anisotropic Gaussian fractional fields [16], simulation [14], Radon transform and X-ray images
[16, 15, 31], fractal dimension results [33, 34]

3 Rice formulas

references for general results [1, 7, 12, 22]

3.1 case d = d′

area formula, mean number of critical points, modified Euler characteristic [1], second facto-
rial moment, repulsion for critical points [8]

3.2 case d > d′

length of nodal lines in the planar case, effect of anisotropy [20] Prop.3.4

4 Minkovski functionals of excursion sets

definition of Minkovski functionals, case of dimension 2, Euler characteristic, non local func-
tionals [9]

4.1 Gaussian kinematic formula

[1, 2]

4.2 Central Limit Theorems and inference statistics

[21, 24, 19, 13], application in cosmology [30]

4.3 Berrys cancellation

[10, 29], similar problem on the 2-dim torus with link to number theory [32, 28]

4.4 deformed Gaussian fields

“from texture to shape” [18, 23]
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